Chiral germanium micro-gears for tuning orbital angular momentum

Sci Rep. 2022 May 6;12(1):7465. doi: 10.1038/s41598-022-11245-1.

Abstract

Group IV light sources with vertical emission and non-zero orbital-angular momentum (OAM) promise to unlock many novel applications. In this report, we demonstrate cylindrically symmetrical germanium micro-gear cavities, fabricated by etching a grating around the circumference of standard micro-disks, with periods ranging from 14 to 22. Photoluminescence (PL) measurements were done to identify the confined whispering-gallery modes (WGM). Finite-difference time-domain (FDTD) simulations were conducted to map the resonant modes to their modal profiles and characteristics. Vertical emission of WGMs with non-zero OAM was demonstrated, with a clear dependence of the OAM order ([Formula: see text]) on the WGM azimuthal order and the number of micro-gear grating periods. As the chirality, or the direction of rotation, is not controlled in a symmetrical cavity, we propose introducing staircase or triangular-shaped gear periods resulting in an asymmetry. By choosing the diameter, number of periods, and the asymmetrical direction of the gear-teeth, it is possible to generate OAM signals with certain wavelength, OAM order and chirality.