Seizure Forecasting by High-Frequency Activity (80-170 Hz) in Long-term Continuous Intracranial EEG Recordings

Neurology. 2022 Jul 25;99(4):e364-e375. doi: 10.1212/WNL.0000000000200348.

Abstract

Background and objectives: Reliable seizure forecasting has important implications in epilepsy treatment and improving the quality of lives for people with epilepsy. High-frequency activity (HFA) is a biomarker that has received significant attention over the past 2 decades, but its predictive value in seizure forecasting remains uncertain. This work aimed to determine the utility of HFA in seizure forecasting.

Methods: We used seizure data and HFA (80-170 Hz) data obtained from long-term, continuous intracranial EEG recordings of patients with drug-resistant epilepsy. Instantaneous rates and phases of HFA cycles were used as features for seizure forecasting. Seizure forecasts based on each individual HFA feature, and with the use of a combined approach, were generated pseudo-prospectively (causally). To compute the instantaneous phases for pseudo-prospective forecasting, real-time phase estimation based on an autoregressive model was used. Features were combined with a weighted average approach. The performance of seizure forecasting was primarily evaluated by the area under the curve (AUC).

Results: Of 15 studied patients (median recording duration 557 days, median seizures 151), 12 patients with >10 seizures after 100 recording days were included in the pseudo-prospective analysis. The presented real-time phase estimation is feasible and can causally estimate the instantaneous phases of HFA cycles with high accuracy. Pseudo-prospective seizure forecasting based on HFA rates and phases performed significantly better than chance in 11 of 12 patients, although there were patient-specific differences. Combining rate and phase information improved forecasting performance compared to using either feature alone. The combined forecast using the best-performing channel yielded a median AUC of 0.70, a median sensitivity of 0.57, and a median specificity of 0.77.

Discussion: These findings show that HFA could be useful for seizure forecasting and represent proof of concept for using prior information of patient-specific relationships between HFA and seizures in pseudo-prospective forecasting. Future seizure forecasting algorithms might benefit from the inclusion of HFA, and the real-time phase estimation approach can be extended to other biomarkers.

Classification of evidence: This study provides Class IV evidence that HFA (80-170 Hz) in long-term continuous intracranial EEG can be useful to forecast seizures in patients with refractory epilepsy.

MeSH terms

  • Drug Resistant Epilepsy* / diagnosis
  • Electrocorticography
  • Electroencephalography
  • Epilepsy*
  • Forecasting
  • Humans
  • Seizures / diagnosis