Biochar immobilized bacteria enhances nitrogen removal capability of tidal flow constructed wetlands

Sci Total Environ. 2022 Aug 25:836:155728. doi: 10.1016/j.scitotenv.2022.155728. Epub 2022 May 4.

Abstract

To improve the nitrogen removal (NR) capability of tidal flow constructed wetlands (TFCWs) for treatment of saline wastewater, biochar, produced from Cyperus alternifolius, was used to adsorb and immobilize a salt tolerant aerobic denitrifying bacteria (Zobellella sp. A63), and then was added as a substrate into the systems. Under low (2:1) or high (6:1) C/N ratio, the removal of NO3--N and total nitrogen (TN) in the biochar immobilized bacteria (BIB) dosing system (TFCW3) was significantly higher (q < 0.05) than that in the untreated system (TFCW1) and the biochar dosing system (TFCW2). At low C/N ratio, the removal rates of NO3--N, TN and chemical oxygen demand (COD) of TFCW3 were 68.2%, 72.6% and 82.5%, respectively, 15-20% higher than TFCW1 and 5-10% higher than TFCW2. When C/N ratio was further increased to 6, the pollutant removal rate of each system was greatly improved, but the removal rate of TFCW3 for NO3--N/TN was still nearly 10% and 5% higher than TFCW1 and TFCW2, respectively. Microbial community analysis showed that aerobic denitrifying bacteria, sulfate reducing bacteria and sulfur-driven denitrifiers (DNSOB) played the most important role of NR in TFCWs. Moreover, biochar bacterial agent significantly increased the abundances of genes involved in NR. The total copy numbers of bacterial 16S rRNA, nirS, nirK, drsA and drsB genes in the TFCW3 were 1.1- to 3.76-fold higher than those in the TFCW1; Especially at low C/N ratio, the copy number of drsA and drsB in the upper layer of TFCW3 were 85.5 and 455 times that of TFCW1, respectively. Thus, BIB provide a more feasible and effective amendment for constructed wetlands to improve the N removal of the saline wastewater by enhancing the microbial NR capacity mainly via aerobic and sulfur autotrophic denitrification.

Keywords: Biochar immobilized bacteria; Denitrification; Functional gene; Microbial community structure; Saline wastewater.

MeSH terms

  • Bacteria
  • Charcoal
  • Denitrification
  • Nitrogen* / analysis
  • RNA, Ribosomal, 16S
  • Sulfur
  • Waste Disposal, Fluid
  • Wastewater / analysis
  • Wetlands*

Substances

  • RNA, Ribosomal, 16S
  • Waste Water
  • biochar
  • Charcoal
  • Sulfur
  • Nitrogen