The biological activities of 5,15-diaryl-10,20-dihalogeno porphyrins for photodynamic therapy

J Cancer Res Clin Oncol. 2022 Sep;148(9):2335-2346. doi: 10.1007/s00432-022-04037-7. Epub 2022 May 6.

Abstract

Purpose: Esophageal cancer is the most common gastrointestinal tumor and is difficult to be eradicated with conventional treatment. Porphyrin-based photosensitizers (PSs) mediated photodynamic therapy (PDT) could kill tumor cells with less damage to normal cells. As the most widely used porphyrin-based photosensitizer in clinics, Photofrin II has excellent anti-tumor effect. However, it has some disadvantages such as weak absorption at near infrared region, the complexity of components and prolonged skin photosensitivity. Here series novel 5,15-diaryl-10,20-dihalogeno porphyrin derivatives were afforded and evaluated to develop more effective and safer photosensitizers for tumor therapy.

Methods: The photophysical properties and singlet oxygen generation rates of 5,15-diaryl-10,20-dihalogeno porphyrins (I1-6, II1-4) were tested. The cytotoxicity of I1-6 and II1-4 were measured by MTT assay. The pathway of cell death was studied by flow cytometry. In vivo photodynamic efficacy of I3 and II2-4 in Eca-109 tumor-bearing BABL/c nude mice were measured and histopathological analysis were examined.

Results: 5,15-Diaryl-10,20-dihalogeno porphyrins I1-6 and II1-4 were synthesized. The longest absorption wavelength of these halogenated porphyrins (λmax = 660 nm) displayed a red shift around 30 nm compared to the unhalogenated porphyrins PS1max = 630 nm). The singlet oxygen generation rates of I1-6 and II1-4 were significantly higher than PS1 and HMME. All PSs mediated PDT showed obvious cytotoxic effect against Eca-109 cells compared to HMME in vitro and in vivo. Among these PSs, II4 exhibited appropriate absorption in the phototherapeutic window, higher 1O2 generation rate (k = 0.0061 s-1), the strongest phototoxicity (IC50 = 0.4 μM), lower dark toxicity, high generation of intracellular ROS in Eca-109 cells and excellent photodynamic anti-tumor efficacy in vivo. Besides, cell necrosis was induced by compound II4 mediated PDT.

Conclusion: All new compounds have obvious photodynamic anti-esophageal cancer effects. Among them, the photosensitizer II4 showed excellent efficacy in vitro and in vivo, which has the potential to become a photodynamic anti-tumor drug.

Keywords: Anti-tumor; Halogenated porphyrin; Photodynamic therapy; Photosensitizer.

MeSH terms

  • Animals
  • Antineoplastic Agents* / therapeutic use
  • Cell Line, Tumor
  • Esophageal Neoplasms* / pathology
  • Mice
  • Mice, Nude
  • Photochemotherapy*
  • Photosensitizing Agents / pharmacology
  • Porphyrins* / pharmacology
  • Porphyrins* / therapeutic use
  • Singlet Oxygen / therapeutic use

Substances

  • Antineoplastic Agents
  • Photosensitizing Agents
  • Porphyrins
  • Singlet Oxygen