Aryldiazoquinoline based multifunctional small molecules for modulating Aβ42 aggregation and cholinesterase activity related to Alzheimer's disease

RSC Adv. 2020 Aug 4;10(48):28827-28837. doi: 10.1039/d0ra05172a. eCollection 2020 Aug 3.

Abstract

Research continues to find a breakthrough for the treatment of Alzheimer's Disease (AD) due to its complicated pathology. Presented herein is a novel series of arydiazoquinoline molecules investigated for their multifunctional properties against the factors contributing to Alzheimer's disease (AD). The inhibitory properties of fourteen closely related aryldiazoquinoline derivatives have been evaluated for their inhibitory effect on Aβ42 peptide aggregation. Most of these molecules inhibited Aβ42 fibrillation by 50-80%. Selected molecules were also investigated for their binding behaviour to preformed Aβ40 aggregates indicating a nanomolar affinity. In addition, these compounds were further investigated as cholinesterase inhibitors. Interestingly, some of the compounds turned out to be moderate in vitro inhibitors for AChE activity with IC50 values in low micro molar range. The highest anti-AChE activity was shown by compound labelled as 2a with an IC50 value of 6.2 μM followed by 2b with IC50 value of 7.0 μM. In order to understand the inhibitory effect, binding of selected molecules to AChE enzyme was studied using molecular docking. In addition, cell toxicity studies using Neuro2a cells were performed to assess their effect on neuronal cell viability which suggests that these molecules possess a non-toxic molecular framework. Overall, the study identifies a family of molecules that show good in vitro anti-Aβ-aggregation properties and moderately inhibit cholinesterase activity.