Searching for double σ- and π-aromaticity in borazine derivatives

RSC Adv. 2020 Aug 11;10(50):29705-29711. doi: 10.1039/d0ra05939k. eCollection 2020 Aug 10.

Abstract

Inspired by the double-aromatic (σ and π) C6H3 +, C6I6 2+, and C6(SePh)6 2+ ring-shaped compounds, herein we theoretically study their borazine derivative analogues. The systems studied are the cation and dications with formulas B3N3H3 +, B3N3Br6 2+, B3N3I6 2+, B3N3(SeH)6 2+, and B3N3(TeH)6 2+. Our DFT calculations indicate that the ring-shaped planar structures of B3N3H3 +, B3N3I6 2+, and B3N3(TeH)6 2+ are more stable in the singlet state, while those of B3N3Br6 2+ and B3N3(SeH)6 2+ prefer the triplet state. Besides, exploration of the potential energy surface shows that the ring-shaped structure is the putative global minimum only for B3N3I6 2+. According to chemical bonding analysis, B3N3H3 +, B3N3I6 2+, and B3N3(TeH)6 2+ have σ and π delocalized bonds. The number of delocalized σ/π electrons is 2/6 for the first, and 10/6 for the second and third, similar to what their carbon analogs exhibit. Finally, the analysis of the magnetically induced current density allows B3N3H3 +, B3N3I6 2+, and B3N3(TeH)6 2+ to be classified as strongly σ aromatic, and poorly π aromatic compounds.