Photocatalysis, photoinduced enhanced anti-bacterial functions and development of a selective m-tolyl hydrazine sensor based on mixed Ag·NiMn2O4 nanomaterials

RSC Adv. 2020 Aug 19;10(51):30603-30619. doi: 10.1039/d0ra05008c. eCollection 2020 Aug 17.

Abstract

In this work, a tri-metal based nanocomposite was synthesized and characterized. A detailed investigation of the photocatalytic dye degradation efficiency of the nanocomposite under visible light showed promising results in a wide pH range, both acidic and basic medium. Studies on anti-bacterial activity against seven pathogenic bacteria, including both Gram positive and Gram negative species, were conducted in the presence and absence of light and compared with the standard antibiotic gentamicin. The minimum inhibitory concentration (MIC) values of Ag·NiMn2O4 against multidrug-resistant (MDR) pathogens ranged from 0.008 to 0.65 μg μL-1, while the minimum bactericidal concentration (MBC) was found to be 0.0016 μg μL-1. The nanomaterial, Ag·NiMn2O4 was deposited onto the surface of a glassy carbon electrode (GCE; 0.0316 cm2) as a thin film to fabricate the chemical sensor probe. The proposed sensor showed linear current (vs. concentration) response to m-THyd (m-tolyl hydrazine) from 1.0 pM to 0.01 mM, which is denoted as the linear dynamic range (LDR). The estimated sensitivity and detection limit of the m-THyd sensor were found to be 47.275 μA μM-1 cm-2 and 0.97 ± 0.05 pM, respectively. As a potential sensor, it is reliable due to its good reproducibility, rapid response, higher sensitivity, working stability for long duration and efficiency in the analysis of real environmental samples.