Gas-phase reaction mechanism in chemical dry etching using NF3 and remotely discharged NH3/N2 mixture

RSC Adv. 2020 Aug 20;10(51):30806-30814. doi: 10.1039/d0ra05726f. eCollection 2020 Aug 17.

Abstract

Modeling of dry etching processes requires a detailed understanding of the relevant reaction mechanisms. This study aims to elucidate the gas-phase mechanism of reactions in the chemical dry etching process of SiO2 layers which is initiated by mixing NF3 gas with the discharged flow of an NH3/N2 mixture in an etching chamber. A kinetic model describing the gas-phase reactions has been constructed based on the predictions of reaction channels and rate constants by quantum chemical and statistical reaction-rate calculations. The primary reaction pathway includes the reaction of NF3 with H atoms, NF3 + H → NF2 + HF, and subsequent reactions involving NF2 and other radicals. The reaction pathways were analyzed by kinetic simulation, and a simplified kinetic model composed of 12 reactions was developed. The surface process was also investigated based on preliminary quantum chemical calculations for ammonium fluoride clusters, which are considered to contribute to etching. The results indicate the presence of negatively charged fluorine atoms in the clusters, which are suggested to serve as etchants to remove SiO2 from the surface.