Integration of RT-LAMP and Microfluidic Technology for Detection of SARS-CoV-2 in Wastewater as an Advanced Point-of-Care Platform

Food Environ Virol. 2022 Dec;14(4):364-373. doi: 10.1007/s12560-022-09522-3. Epub 2022 May 4.

Abstract

Development of lab-on-a-chip (LOC) system based on integration of reverse transcription loop-mediated isothermal amplification (RT-LAMP) and microfluidic technology is expected to speed up SARS-CoV-2 diagnostics allowing early intervention. In the current work, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and RT-LAMP assays were performed on extracted RNA of seven wastewater samples from COVID-19 hotspots. RT‑LAMP assay was also performed on wastewater samples without RNA extraction. Current detection of SARS-CoV-2 is mainly by RT-qPCR of ORF (ORF1ab) and N genes so we targeted both to find the best target gene for SARS-CoV-2 detection. We also performed RT-LAMP with/without RNA extraction inside microfluidic device to target both genes. Positivity rates of RT-qPCR and RT-LAMP performed on extracted RNA were 100.0% (7/7) and 85.7% (6/7), respectively. RT-qPCR results revealed that all 7 wastewater samples were positive for N gene (Ct range 37-39), and negative for ORF1ab, suggesting that N gene could be the best target gene for SARS-CoV-2 detection. RT-LAMP of N and ORF (ORF1a) genes performed on wastewater samples without RNA extraction indicated that all 7 samples remains pink (negative). The color remains pink in all microchannels except microchannels which subjected to RT-LAMP for targeting N region after RNA extraction (yellow color) in 6 out of 7 samples. This study shows that SARS-CoV-2 was successfully detected from wastewater samples using RT-LAMP in microfluidic chips. This study brings the novelty involving the use of wastewater samples for detection of SARS-CoV-2 without previous virus concentration and with/without RNA extraction.

Keywords: Microfluidic device; N gene; RT-LAMP; SARS-CoV-2.

MeSH terms

  • COVID-19 Testing
  • COVID-19* / diagnosis
  • Humans
  • Microfluidics
  • Point-of-Care Systems
  • RNA
  • SARS-CoV-2* / genetics
  • Sensitivity and Specificity
  • Wastewater

Substances

  • Waste Water
  • RNA

Supplementary concepts

  • LAMP assay