Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis

Nat Commun. 2022 May 4;13(1):2447. doi: 10.1038/s41467-022-30119-8.

Abstract

Damaged hyaline cartilage has no capacity for self-healing, making osteoarthritis (OA) "difficult-to-treat". Cartilage destruction is central to OA patho-etiology and is mediated by matrix degrading enzymes. Here we report decreased expression of miR-17 in osteoarthritic chondrocytes and its deficiency contributes to OA progression. Supplementation of exogenous miR-17 or its endogenous induction by growth differentiation factor 5, effectively prevented OA by simultaneously targeting pathological catabolic factors including matrix metallopeptidase-3/13 (MMP3/13), aggrecanase-2 (ADAMTS5), and nitric oxide synthase-2 (NOS2). Single-cell RNA sequencing of hyaline cartilage revealed two distinct superficial chondrocyte populations (C1/C2). C1 expressed physiological catabolic factors including MMP2, and C2 carries synovial features, together with C3 in the middle zone. MiR-17 is highly expressed in both superficial and middle chondrocytes under physiological conditions, and maintains the physiological catabolic and anabolic balance potentially by restricting HIF-1α signaling. Together, this study identified dual functions of miR-17 in maintaining cartilage homeostasis and prevention of OA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cartilage, Articular* / metabolism
  • Cells, Cultured
  • Chondrocytes / metabolism
  • Homeostasis
  • Humans
  • Matrix Metalloproteinase 13 / metabolism
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Osteoarthritis* / metabolism

Substances

  • MIRN17 microRNA, human
  • MicroRNAs
  • Matrix Metalloproteinase 13