RGB Achromatic Metalens Doublet for Digital Imaging

Nano Lett. 2022 May 25;22(10):3969-3975. doi: 10.1021/acs.nanolett.2c00486. Epub 2022 May 4.

Abstract

Chromatic aberration is a major challenge faced by metalenses. Current methods to achieve broadband achromatic operation in metalenses usually suffer from limited size, numerical aperture, and working bandwidth due to the finite group delay of meta-atoms, thus restricting the range of practical applications. Multiwavelength achromatic metalenses can overcome those limitations, making it possible to realize larger numerical aperture (NA) and sizes simultaneously. However, they usually require three layers, which increases their fabrication complexity, and have only been demonstrated in small sizes, with low numerical aperture and modest efficiencies. Here, we demonstrate a 1 mm diameter red-green-blue achromatic metalens doublet with a designed NA of 0.8 and successfully apply the metalens in a digital imaging system. This work shows the potential of the doublet metasurfaces, extending their applications to digital imaging systems such as digital projectors, virtual reality glasses, high resolution microscopies, etc.

Keywords: RGB achromatic; digital imaging; high numerical aperture; large size; metalens doublet.

MeSH terms

  • Color
  • Humans
  • Image Processing, Computer-Assisted* / instrumentation
  • Lenses*