Reaching Nearly 100% Quantum Efficiencies in Thin Solid Films of Semiconducting Polymers via Molecular Confinements under Large Segmental Stresses

ACS Nano. 2022 May 24;16(5):8273-8282. doi: 10.1021/acsnano.2c02083. Epub 2022 May 4.

Abstract

Quantum efficiencies remain a critical issue for general applications of semiconducting polymers in optoelectronics and others. In this work, we demonstrate that nearly 100% quantum efficiencies (η's) in thin solid films can be reached when the polymer molecules are mechanically stretched into molecular confinement. We selected three conjugated polymers of varied backbone stiffness and interchain coupling, prepared in both diluted and pristine states. All of the polymers when highly diluted (c = 0.1 wt %) exhibited massive η increases after stretching to very large strains (∼300-500%) via micronecking, with the rigid polyfluorene (PFO) and semirigid MEH-PPV both manifesting η ≈ 90%, while the most flexible yet regioregular polythiophene (P3HT-rr) exhibited a 10-fold increase to ∼21%. In the pristine state, molecular aggregation and interchain coupling curtail development of the molecular confinement, but the large-strain deformation still enhances η's significantly, to ∼90% (PFO) and ∼55% (MEH-PPV) despite no increases for the crystalline P3HT-rr. Moreover, upon substitution by a bulkier side-group to reduce interchain coupling, the pristine films of polythiophene (P3EHT) exhibited a ∼3-fold increase of η after the stretching. The nearly 100% of η's in fully stretched molecules indicates that the in situ self-trapping occurring via sub-picosecond backbone interactions can be mostly responsible for energy dissipations and quite suppressible by segmental stress control. The mechanical confinement effects also indicate the fundamental role of molecular mechanics during stabilization and migration of photoexcited charges.

Keywords: electron−phonon coupling; quantum efficiencies; quenching; segmental stresses; self-trapping; semiconducting polymers.