Abscisic acid facilitates phosphate acquisition through the transcription factor ABA INSENSITIVE5 in Arabidopsis

Plant J. 2022 Jul;111(1):269-281. doi: 10.1111/tpj.15791. Epub 2022 May 19.

Abstract

Low phosphate (LP) in soil is a common nutrient stress that severely restricts agricultural production, but the role, if any, of the major stress phytohormone abscisic acid (ABA) in plant phosphate (Pi) starvation responses remains elusive. Here, we report that LP-induced ABA accumulation promotes Pi uptake in an ABA INSENSITIVE5 (ABI5)-dependent manner in Arabidopsis thaliana. LP significantly activated plant ABA biosynthesis, metabolism, and stress responses, suggesting a role of ABA in the plant response to Pi availability. LP-induced ABA accumulation and expression of two major high-affinity phosphate transporter genes PHOSPHATE TRANSPORTER1;1/1;4 (PHT1;1/1;4) were severely impaired in a mutant lacking BETA-GLUCOSIDASE1 (BG1), which converts conjugated ABA to active ABA, and the mutant had shorter roots and less Pi content than wild-type plants under LP conditions. Moreover, a mutant of ABI5, which encodes a central transcription factor in ABA signaling, also exhibited suppressed root elongation and had reduced Pi content under LP conditions. ABI5 facilitated Pi acquisition by activating the expression of PHT1;1 by directly binding to its promoter, while overexpression of PHT1;1 completely rescued its Pi content under LP conditions. Together, our findings illustrate a molecular mechanism by which ABA positively modulates phosphate acquisition through ABI5 in the Arabidopsis response to phosphate deficiency.

Keywords: ABA INSENSITIVE5; BETA-GLUCOSIDASE1; PHOSPHATE TRANSPORTER1;1; abscisic acid; phosphate starvation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abscisic Acid / metabolism
  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • Basic-Leucine Zipper Transcription Factors / metabolism
  • Gene Expression Regulation, Plant
  • Phosphates / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Arabidopsis Proteins
  • Basic-Leucine Zipper Transcription Factors
  • Phosphates
  • Transcription Factors
  • Abscisic Acid