Multi-state MRAM cells for hardware neuromorphic computing

Sci Rep. 2022 May 3;12(1):7178. doi: 10.1038/s41598-022-11199-4.

Abstract

Magnetic tunnel junctions (MTJ) have been successfully applied in various sensing application and digital information storage technologies. Currently, a number of new potential applications of MTJs are being actively studied, including high-frequency electronics, energy harvesting or random number generators. Recently, MTJs have been also proposed in designs of new platforms for unconventional or bio-inspired computing. In the current work, we present a complete hardware implementation design of a neural computing device that incorporates serially connected MTJs forming a multi-state memory cell can be used in a hardware implementation of a neural computing device. The main purpose of the multi-cell is the formation of quantized weights in the network, which can be programmed using the proposed electronic circuit. Multi-cells are connected to a CMOS-based summing amplifier and a sigmoid function generator, forming an artificial neuron. The operation of the designed network is tested using a recognition of hand-written digits in 20 [Formula: see text] 20 pixels matrix and shows detection ratio comparable to the software algorithm, using weights stored in a multi-cell consisting of four MTJs or more. Moreover, the presented solution has better energy efficiency in terms of energy consumed per single image processing, as compared to a similar design.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Computers*
  • Information Storage and Retrieval
  • Neural Networks, Computer*
  • Neurons / physiology