An efficient ultrasonic-assisted bleaching strategy customized for yak hair triggered by melanin-targeted Fenton reaction

Ultrason Sonochem. 2022 May:86:106020. doi: 10.1016/j.ultsonch.2022.106020. Epub 2022 Apr 29.

Abstract

Promoting processing efficiency and taking advantage of agricultural by-products are two promising ways to achieve sustainable textile industry. This study presents a customized efficient ultrasonic-assisted bleaching strategy for yak hair - a widely existing but underexploited secondary dark shade fibre from yak. A melanin-targeted Fenton oxidation process is established which involves three phases, i.e., (I) incorporation of Fe2+ ions with melanin, (II) catalytic oxidative bleaching using hydrogen peroxide (H2O2), and (III) reductive cleansing. The bleaching efficacy, dyeing performance and tensile property of yak hair treated with and without ultrasound were explored and compared. Further, the ultrasonic bleaching mechanism in terms of the catalytic effect of Fe2+ ions, the promotion of H2O2 decomposition, removal of melanin granule from yak hair, were demonstrated. Finally, the main effects and interactions of parameters in phase II, and optimal condition were obtained through mathematical modelling based on a central composite design (CCD). Results reveal that ultrasonic bleaching dramatically enhances the whiteness index (WI) of yak hair from 11 to 45 which is 44.6% higher than those bleached without ultrasound, and also promotes the uptake of acid dyes. There is only 15% tensile strength loss and 14% elongation increment of yak hair after ultrasonic bleaching, rising from a slight damage of cuticle layer and cleavage of disulfide bonds, respectively. In the study of bleaching mechanism, Fe2+ ion is confirmed to improve the H2O2 decomposition rate by 20.9% which further runs up to 35.9% after introducing ultrasound. Ultrasound increases the concentration of hydroxyl radicals (HO) by 94% which are the main oxidative species participating in bleaching confirmed by HO scavenging experiment. The porous structure was observed on the cross section of yak hair stemming from the removal of melanin granules contributed by the cleaning action of ultrasound. A theoretical highest WI of 52.4 can be achieved under an optimal condition based on the CCD study. In general, the proposed melanin-targeted bleaching strategy for yak hair that integrates ultrasonic technology and Fenton reaction, is beneficial to the development of sustainable textile industry from material and processing perspectives.

Keywords: Bleaching; Fenton reaction; Sustainable production; Ultrasound; Yak hair.

MeSH terms

  • Animals
  • Cattle
  • Coloring Agents
  • Hair / chemistry
  • Hydrogen Peroxide* / chemistry
  • Hydroxyl Radical / chemistry
  • Melanins* / analysis
  • Melanins* / metabolism
  • Melanins* / pharmacology
  • Oxidation-Reduction
  • Ultrasonics

Substances

  • Coloring Agents
  • Melanins
  • Hydroxyl Radical
  • Hydrogen Peroxide