Boosting CO2 adsorption and selectivity in metal-organic frameworks of MIL-96(Al) via second metal Ca coordination

RSC Adv. 2020 Feb 25;10(14):8130-8139. doi: 10.1039/d0ra00305k. eCollection 2020 Feb 24.

Abstract

Aluminum trimesate-based MOF (MIL-96-(Al)) has attracted intense attention due to its high chemical stability and strong CO2 adsorption capacity. In this study, CO2 capture and selectivity of MIL-96-Al was further improved by the coordination of the second metal Ca. To this end, a series of MIL-96(Al)-Ca were hydrothermally synthesised by a one-pot method, varying the molar ratio of Ca2+/Al3+. It is shown that the variation of Ca2+/Al3+ ratio results in significant changes in crystal shape and size. The shape varies from the hexagonal rods capped in the ends by a hexagonal pyramid in MIL-96(Al) without Ca to the thin hexagonal disks in MIL-96(Al)-Ca4 (the highest Ca content). Adsorption studies reveal that the CO2 adsorption on MIL-96(Al)-Ca1 and MIL-96(Al)-Ca2 at pressures up to 950 kPa is vastly improved due to the enhanced pore volumes compared to MIL-96(Al). The CO2 uptake on these materials measured in the above sequence is 10.22, 9.38 and 8.09 mmol g-1, respectively. However, the CO2 uptake reduces to 5.26 mmol g-1 on MIL-96(Al)-Ca4. Compared with MIL-96(Al)-Ca1, the N2 adsorption in MIL-96(Al)-Ca4 is significantly reduced by 90% at similar operational conditions. At 100 and 28.8 kPa, the selectivity of MIL-96(Al)-Ca4 to CO2/N2 reaches up to 67 and 841.42, respectively, which is equivalent to 5 and 26 times the selectivity of MIL-96(Al). The present findings highlight that MIL-96(Al) with second metal Ca coordination is a potential candidate as an alternative CO2 adsorbent for practical applications.