Improvement of thermal stability of highly active species on SiO2 supported copper-ceria catalysts

RSC Adv. 2021 Oct 11;11(53):33271-33275. doi: 10.1039/d1ra06204b. eCollection 2021 Oct 8.

Abstract

CuO-CeO2/SiO2 catalysts lose activity when they are calcined at 600 °C and temperatures above. This loss of activity was related to a decrease in the amount of highly dispersed Cu species interacting with Ce (CuO-CeO2 interface) over the SiO2 support. These species are highly active in CO oxidation, so this reaction was selected to conduct this study. In order to avoid the activity loss in CuO-CeO2/SiO2 catalysts, the effect of high Ce loads (8, 16, 24, and 36%) on the thermal stability of these catalysts was studied. The results reveal that when increasing calcination temperature from 500 to 700 °C, the catalysts with Ce load equal to or higher than 24% increase the formation of highly dispersed Cu interacting with Ce and therefore the activity (90% of CO conversion at 120 °C). In catalysts with Ce load below 24%, Cu species agglomerate and decrease the activity (less than 5% of CO conversion at 120 °C).