Carbon nanostructure-reinforced SiCw/Si3N4 composite with enhanced thermal conductivity and mechanical properties

RSC Adv. 2020 Apr 16;10(25):15023-15029. doi: 10.1039/d0ra00876a. eCollection 2020 Apr 8.

Abstract

Carbon nanostructures (CNS) as a kind of reinforcement material can remarkably enhance the mechanical and thermal properties of ceramics. This research presents an analysis of the influence of CNS on the thermal conductivity and mechanical properties of SiCw/Si3N4 composites. The SiCw/Si3N4 composites containing various types of CNS e.g. carbon nanofibers (CNF), multi-walled carbon nanotubes (MWCNT) and graphene nano-platelets (GNP) were fabricated by hot-press sintering. XRD analysis confirmed a complete transformation of α-Si3N4 to β-Si3N4 and microstructural analysis shows a uniform distribution, as well as a pullout and bridging mechanism of CNS. The results revealed that the thermal conductivity and mechanical properties of SiCw/Si3N4 composites increased with the addition of CNS. Maximum values of fracture toughness (9.70 ± 0.8 MPa m1/2) and flexural strength (765 ± 58 MPa) have been achieved for the MWCNT-containing SiCw/Si3N4 composite, whereas the maximum values of Young's modulus (250 ± 3.8 GPa) and hardness (27.2 ± 0.9 GPa) have been achieved for the CNF-containing SiCw/Si3N4 composite. Moreover, thermal conductivity also improved with the addition of CNS and reached a maximum value of 110.6 W m-1 K-1 for the CNF-containing SiCw/Si3N4 composite. This work provides a useful approach for the fabrication of high-performance multifunctional composites for emerging engineering applications.