Reducing-agent-free facile preparation of Rh-nanoparticles uniformly anchored on onion-like fullerene for catalytic applications

RSC Adv. 2020 Jan 14;10(5):2545-2559. doi: 10.1039/c9ra09244g.

Abstract

Herein we report a very simple 'mix and heat' synthesis of a very fine Rh-nanoparticle loaded carbon fullerene-C60 nanocatalyst (Rh(0)NPs/Fullerene-C60) for the very first time. The preparation method used no reducing agent and capping agent to control the morphology of the nanocatalyst. Transmission electron microscopy (TEM) results confirmed the uniform decoration of small Rh-nanoparticles on the surface of fullerene-C60. The Rh-content in Rh(0)NPs/Fullerene-C60 was found to be 2.89 wt%. The crystalline properties of Rh(0)NPs/Fullerene-C60 were studied by X-ray diffraction (XRD). The metallic state of Rh-nanoparticles in Rh(0)NPs/Fullerene-C60 was confirmed by X-ray photoemission spectroscopy (XPS). Raman results depicted good interaction between Rh-nanoparticles and fullerene-C60. To our delight, the present Rh(0)NPs/Fullerene-C60 showed excellent catalytic activity in the reduction of 4-nitrophenol with NaBH4 in water. Very high k app, k' and TOF values of 82.14 × 10-3 min-1, 4107 × 10-3 min-1 and 138 min-1, respectively, were calculated for the Rh(0)NPs/Fullerene-C60 catalyzed reduction of 4-nitrophenol. To the best of our knowledge, this is the most efficient fullerene-based nanocatalyst for the rapid reduction of 4-nitrophenol reported to date. Moreover, the catalytic activity of Rh(0)NPs/Fullerene-C60 was also tested towards Suzuki cross-coupling reactions. Reusability of the Rh(0)NPs/Fullerene-C60 was also tested.