Temperature sensing in Tb3+/Eu3+-based tetranuclear silsesquioxane cages with tunable emission

RSC Adv. 2021 Oct 27;11(55):34735-34741. doi: 10.1039/d1ra06755a. eCollection 2021 Oct 25.

Abstract

New luminescent cage-like tetranuclear silsesquioxanes [NEt4][(Ph4Si4O8)2(Tb3Eu)(NO3)4(OH)(EtOH)3(H2O)]·4(EtOH) (1) and [NEt4]2[(Ph4Si4O8)2(Tb2Eu2)(NO3)6(EtOH)2(MeCN)2]·4(MeCN) (2) present a tunable thermosensitive Tb3+-to-Eu3+ energy transfer driven by Tb3+ and Eu3+ emission and may be used as temperature sensors operating in the range 41-100 °C with excellent linearity (R 2 = 0.9990) and repeatability (>95%). The thermometer performance was evidenced by the maximum relative sensitivity of 0.63% °C-1 achieved at 68 °C.