Stellaria media tea protects against diabetes-induced cardiac dysfunction in rats without affecting glucose tolerance

J Tradit Complement Med. 2021 Aug 10;12(3):250-259. doi: 10.1016/j.jtcme.2021.08.003. eCollection 2022 May.

Abstract

Background and aim: Common chickweed (Stellaria media) tea has traditionally been applied for treatment of various metabolic diseases including diabetes in folk medicine; however, experimental evidence to support this practice is lacking. Therefore, we aimed to assess the effect of Stellaria media tea on glucose homeostasis and cardiac performance in a rat model of diabetes.

Experimental procedure: Hot water extract of Stellaria media herb were analyzed and used in this study, where diabetes was induced by fructose-enriched diet supplemented with a single injection of streptozotocin. Half of the animals received Stellaria media tea (100 mg/kg) by oral gavage. At the end of the 20-week experimental period, blood samples were collected and isolated working heart perfusions were performed.

Results and conclusion: Compared to the animals receiving standard chow, serum fasting glucose level was increased and glucose tolerance was diminished in diabetic rats. Stellaria media tea did not affect significantly fasting hyperglycemia and glucose intolerance; however, it attenuated diabetes-induced deterioration of cardiac output and cardiac work. Analysis of the chemical composition of Stellaria media tea suggested the presence of rutin and various apigenin glycosides which have been reported to alleviate diabetic cardiomyopathy. Moreover, Stellaria media prevented diabetes-induced increase in cardiac STAT3 phosphorylation. We demonstrated for the first time that Stellaria media tea may beneficially affect cardiac dysfunction induced by diabetes without improvement of glucose homeostasis. Rutin and/or apigenin glycosides as well as modulation of STAT3 signaling may be implicated in the protection of Stellaria media tea against diabetic cardiomyopathy.

Keywords: Diabetic co-morbidity; Flavonoid; Medicinal herb; Prevention; Signal transducer and activator of transcription 3.