Transport of ZIF-8 in porous media under the influence of surfactant type and nanoparticle concentration

Water Res. 2022 Jun 30:218:118490. doi: 10.1016/j.watres.2022.118490. Epub 2022 Apr 21.

Abstract

Knowledge of the fate and transport of metal-organic frameworks (MOFs) in porous media is essential to understanding their environmental impacts. However, to date, the transport mechanisms of MOFs are not fully revealed. Meanwhile, surfactants can promote MOFs dispersion by forming a stable suspension. They also allow MOFs to migrate in the aqueous environment, which would increase the risks of MOFs being exposed to human health and the ecological environment. In this study, the effect of surfactants type and nanoparticle (NP) concentrations (50, 100, and 200 mg/L) were investigated using a sand column to study the transportability of ZIF-8 NPs in saturated porous media. Surfactants used were categorized into three groups, including cationic surfactants (CTAB, DTAB), anionic surfactants (SDBS, SDS), and nonionic surfactants (Tween 80, Tween 20). Experimental results showed that the ionic surfactants significantly increased the transportability of ZIF-8 NPs. Furthermore, a low concentration of NPs tended to break through the column under ionic surfactant conditions, and the maximum effluent recovery of ZIF-8 NPs (50 mg/L) was 87.4% in the presence of SDS. Nevertheless, ZIF-8 NPs tended to deposit in the inlet of the sand column in the presence of nonionic surfactants due to hydrodynamic bridging and straining. This research provides a comprehensive understanding of the deposition mechanism of ZIF-8 NPs as affected by surfactant types and NP concentrations. Most importantly, the study highlights those ionic surfactants had a significant impact on the mobility of ZIF-8 NPs, which arouses attention to the ecological and human health risk assessment related to the manufacturing of MOFs with the aid of various dispersing agents.

Keywords: Straining; Surface tension; Surfactant type; Transport; ZIF-8 NPs.

MeSH terms

  • Humans
  • Nanoparticles*
  • Porosity
  • Sand
  • Surface-Active Agents*

Substances

  • Sand
  • Surface-Active Agents