A novel method for photon unfolding spectroscopy of protein ions in the gas phase

Rev Sci Instrum. 2022 Apr 1;93(4):043003. doi: 10.1063/5.0080040.

Abstract

In this study, a new experimental method for photon unfolding spectroscopy of protein ions based on a Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer was developed. The method of short-time Fourier transform has been applied here to obtain decay curves of target ions trapped in the cell of the FT ICR mass spectrometer. Based on the decay constants, the collision cross sections (CCSs) of target ions were calculated using the energetic hard-sphere model. By combining a tunable laser to the FT ICR mass spectrometer, the changes of CCSs of the target ions were recorded as a function of the wavelengths; thus, the photon isomerization spectrum was obtained. As one example, the photon isomerization spectrum of [Cyt c + 13H]13+ was recorded as the decay constants relative to the applied wavelengths of the laser in the 410-480 nm range. The spectrum shows a maximum at 426 nm, where an unfolded structure induced by a 4 s irradiation can be deduced. The strong peak at 426 nm was also observed for another ion of [Cyt c + 15H]15+, although some difference at 410 nm between the two spectra was found at the same time. This novel method can be expanded to ultraviolet or infrared region, making the experimental study of wavelength-dependent photon-induced structural variation of a variety of organic or biological molecules possible.

MeSH terms

  • Cyclotrons*
  • Fourier Analysis
  • Ions
  • Proteins*
  • Spectroscopy, Fourier Transform Infrared / methods

Substances

  • Ions
  • Proteins