Biomechanical in vitro analysis of a novel flexible implant for pubic symphysis disruption using an ultra-high molecular weight polyethylene fiber cord

Clin Biomech (Bristol, Avon). 2022 May:95:105652. doi: 10.1016/j.clinbiomech.2022.105652. Epub 2022 Apr 22.

Abstract

Background: Plate osteosynthesis depicts the gold standard to surgically treat pubic symphysis disruptions. However, high rates of implant failure after plate osteosynthesis are reported, probably because of the iatrogenic arthrodesis of this fibrocartilaginous joint. Therefore, flexible implants for treatment of pubic symphysis disruptions appear to be a sensible solution.

Methods: In this biomechanical screening study, we designed and investigated a flexible implant, which consists of two plates connected with an ultra-high molecular weight polyethylene fiber cord. We mechanically tested eye splices as a possible fixation method of the cords by performing tensile load to failure tests. Afterwards, we developed a biomechanically appropriate plate design and cord routing between the plates. Finally, we biomechanically tested the flexible implant under tensile and shear loading until failure.

Findings: When fixing a 1 mm ultra-high molecular weight polyethylene fiber cord with eye splices, a load at failure of 1570.74 N was detected under tensile loading. None of the eye splices failed but the cords itself ruptured. The load at failure of the designed cord routing in criss-cross technique and fixation within the plates amounts 4742.09 N under tensile and 2699.77 N under shear load.

Interpretation: We developed a novel flexible implant for repair of pubic symphysis disruptions using ultra-high molecular weight polyethylene fiber cords connected to osteosynthesis plates. We identified eye splices as a mechanically optimal fixation method and proved that the ultra-high molecular weight polyethylene fiber cord routing and fixation of the flexible implant clearly withstands physiological forces acting on the pubic symphysis.

Keywords: Biomechanical testing; Flexible implant; Pubic symphysis disruption; Ultra-high molecular weight polyethylene fiber.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomechanical Phenomena
  • Bone Plates
  • Fracture Fixation, Internal / methods
  • Humans
  • Polyethylenes
  • Pubic Symphysis* / surgery

Substances

  • Polyethylenes
  • ultra-high molecular weight polyethylene