Vacuum-Assisted Thermal Annealing of CsPbI3 for Highly Stable and Efficient Inorganic Perovskite Solar Cells

Angew Chem Int Ed Engl. 2022 Jul 4;61(27):e202203778. doi: 10.1002/anie.202203778. Epub 2022 May 12.

Abstract

Inorganic cesium lead iodide perovskite CsPbI3 is attracting great attention as a light absorber for single or multi-junction photovoltaics due to its outstanding thermal stability and proper band gap. However, the device performance of CsPbI3 -based perovskite solar cells (PSCs) is limited by the unsatisfactory crystal quality and thus severe non-radiative recombination. Here, vacuum-assisted thermal annealing (VATA) is demonstrated as an effective approach for controlling the morphology and crystallinity of the CsPbI3 perovskite films formed from the precursors of PbI2 , CsI, and dimethylammonium iodide (DMAI). By this method, a large-area and high-quality CsPbI3 film is obtained, exhibiting a much reduced trap-state density with prolonged charge lifetime. Consequently, the solar cell efficiency is raised from 17.26 to 20.06 %, along with enhanced stability. The VATA would be an effective approach for fabricating high-performance thin-film CsPbI3 perovskite optoelectronics.

Keywords: Crystal Growth; CsPbI3 Perovskite Solar Cells; Solar Cells; Vacuum-Assisted Thermal Annealing.