Sex-specific differences in the efficacy of traditional low frequency versus high frequency spinal cord stimulation for chronic pain

Bioelectron Med. 2022 Apr 28;8(1):8. doi: 10.1186/s42234-022-00090-2.

Abstract

Introduction: Spinal cord stimulation (SCS), an FDA-approved therapy for chronic pain, uses paresthesia (low frequency SCS (LF-SCS)) or paresthesia-free (such as high-frequency SCS (HF-SCS)) systems, providing analgesia through partially-elucidated mechanisms, with recent studies indicating a sexual dimorphism in pain pathogenesis (Bretherton et al., Neuromodulation, 2021; Paller et al., Pain Med 10:289-299, 2009; Slyer et al., Neuromodulation, 2019; Van Buyten et al., Neuromodulation 20:642-649, 2017; Mekhail et al., Pain Pract, 2021). We aim to evaluate SCS therapy sex effects based on paradigm, utilizing visual analog scores (VAS), perceived pain reduction (PPR), and opioid use.

Methods: A retrospective cohort study of SCS patients implanted between 2004 and 2020 (n = 237) was conducted. Descriptive statistics and linear mixed methods analyses were used.

Results: HF-SCS (10 kHz) was implanted in 94 patients (40 females, 54 males), and LF-SCS in 143 (70 females, 73 males). At 3 months and 6 months, HF-SCS (p < 0.001) and LF-SCS (p < 0.005) had lower VAS scores compared to baseline (p < 0.005), with no differences across groups. PPR improved in both post-implantation (p < 0.006) and at 3 months (p < 0.004 respectively), compared to baseline persisting to 6 (p < 0.003) and 12 months (p < 0.01) for HF-SCS, with significantly better PPR for HF-SCS at 3 (p < 0.008) and 6 (p < 0.001) months compared to LF-SCS. There were no differences in opioid use from baseline for either modality; however LF-SCS patients used more opioids at every time point (p < 0.05) compared to HF-SCS. VAS was improved for all modalities in both sexes at 3 months (p = 0.001), which persisted to 6 months (p < 0.05) for HF-SCS males and females, and LF-SCS females. Female HF-SCS had improved PPR at 3 (p = 0.016) and 6 (p = 0.022) months compared to baseline, and at 6 (p = 0.004) months compared to LF-SCS. Male HF-SCS and LF-SCS had improved PPR post-implantation (p < 0.05) and at 3 months (p < 0.05), with HF-SCS having greater benefit at 3 (p < 0.05) and 6 (p < 0.05) months. LF-SCS males but not females used less opioids at 6 months (p = 0.017) compared to baseline; however this effect did not persist. On linear mixed model analyses, including age, sex and stimulator type, VAS decreased with age, at each timepoint, and had a trend towards increasing with female sex, while PPR increased at 3 and 6 months and lastly HF-SCS was associated with decreased opioid use.

Discussion: PPR at 3 and 6 months improved to a greater extent in HF-SCS. HF-SCS females had improved PPR at 3 and 6 months, and only LF-SCS males used less opioids at 6 months, potentially indicating sex-based pathway. Future studies should further elucidate differences in sex-based pathways and identify optimal SCS opioid-sparing paradigms for chronic pain patients.

Keywords: HF-SCS; LF-SCS; Opioid; Outcomes; Sex; Spinal cord stimulator; VAS.