Climate adaptation guidance: New roles for hydroeconomic analysis

Sci Total Environ. 2022 Aug 20:835:155518. doi: 10.1016/j.scitotenv.2022.155518. Epub 2022 Apr 26.

Abstract

Climate water stress internationally challenges the goal of achieving food, energy, and water security. This challenge is elevated by population and income growth. Increased climate water stress levels reduce water supplies in many river basins and elevate competition for water among sectors. Organized information is needed to guide river basin managers and stakeholders who must plan for a changing climate through innovative water allocation policies, trade-off analysis, vulnerability assessment, capacity adaptation, and infrastructure planning. Several hydroeconomic models have been developed and applied assessing water use in different sectors, counties, cultures, and time periods. However, none to date has presented an optimization framework by which historical water use and economic benefit patterns can be replicated while presenting capacity to adapt to future climate water stresses to inform the design of policies not yet been implemented. This paper's unique contribution is to address this gap by designing and presenting results of a hydroeconomic model for which optimized base conditions exactly match observed data water use and economic welfare for several urban and agricultural uses at several locations in a large European river basin for which water use supports a population of more than 3.2 million. We develop a state-of-the arts empirical dynamic hydroeconomic optimization model to discover land and water use patterns that optimize sustained farm and city income under various levels of climate-water stress. Findings using innovative model calibration methods allow for the discovery of efficient water allocation plans as well as providing insight into marginal behavioral responses to climate water stress and water policies. Results identify that water trade policy under climate water stress provides more economically efficient water use patterns, reallocating water from lower valued uses to higher valued uses such as urban water. The Ebro River Basin in Spain is used as an example to investigate water use adaptation patterns under various levels of climate water stress. That basin's issues and challenges can be of relevance to other river basins internationally.

Keywords: Adaptation patterns; Climate water stress; Optimization model; Water sharing policies.

MeSH terms

  • Agriculture
  • Climate Change
  • Dehydration*
  • Humans
  • Rivers
  • Water Supply*