Insecticide Resistance and Control Failure Likelihood Analysis in Plutella xylostella (Lepidoptera: Plutellidae) Populations From Taiwan

J Econ Entomol. 2022 Jun 8;115(3):835-843. doi: 10.1093/jee/toac048.

Abstract

The status of insecticide resistance levels is important for applying suitable pest management approaches. The present study investigated the insecticide resistance of Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) populations from five major cruciferous growing areas in Taiwan. The surveyed locations were distributed from central to southern Taiwan and included Taichung, Changhua, Yunlin, Chiayi, and Kaohsiung. High levels of resistance to spinosad, indoxacarb, metaflumizone, and chlorantraniliprole were recorded among the surveyed populations except in Taichung. The resistance ratios ranged from 2.376 to 1,236-fold for spinosad and 24.63-1,511-fold for indoxacarb. Similarly, those for metaflumizone and chlorantraniliprole, were 2.563-76.21- and 4.457-683.0-fold, respectively. However, Bacillus thuringiensis subsp. aizawai, Bacillus thuringiensis subsp. kurstaki, emamectin benzoate, and diafenthiuron were still relatively effective against most field populations of P. xylostella. After approximately 10 generations of being maintained in the laboratory without exposure to insecticides, the resistance ratios of the Kaohsiung and Changhua populations declined to approximately 1.4-10-fold, and insecticides with control failure likelihood also began to show a negligible risk of control failure. Although spinosad, indoxacarb, metaflumizone, and chlorantraniliprole have lost their effectiveness in most field populations of P. xylostella in Taiwan, their effectiveness may be recovered in the absence of insecticide-selection pressure for approximately 10 generations. Therefore, we suggest that a constant survey of insecticide resistance and well-designed insecticide rotation based on the survey results are necessary for the effective control and insecticide resistance management of P. xylostella.

Keywords: control failure likelihood; diamondback moth; insecticide; resistance ratio.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacillus thuringiensis*
  • Insecticide Resistance
  • Insecticides* / pharmacology
  • Moths*
  • Taiwan

Substances

  • Insecticides