Consumer-grade wearables identify changes in multiple physiological systems during COVID-19 disease progression

Cell Rep Med. 2022 Apr 19;3(4):100601. doi: 10.1016/j.xcrm.2022.100601.

Abstract

Consumer-grade wearables are needed to track disease, especially in the ongoing pandemic, as they can monitor patients in real time. We show that decomposing heart rate from low-cost wearable technologies into signals from different systems can give a multidimensional description of physiological changes due to COVID-19 infection. We find that the separate physiological features of basal heart rate, heart rate response to physical activity, circadian variation in heart rate, and autocorrelation of heart rate are significantly altered and can classify symptomatic versus healthy periods. Increased heart rate and autocorrelation begin at symptom onset, while the heart rate response to activity increases soon after symptom onset and increases more in individuals exhibiting cough. Symptom onset is associated with a blunting of circadian variation in heart rate, as measured by the uncertainty in the phase estimate. This work establishes an innovative data analytic approach to monitor disease progression remotely using consumer-grade wearables.

Keywords: COVID-19; circadian rhythms; disease monitoring; heart rate; mathematical modeling; wearables.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Disease Progression
  • Heart Rate
  • Humans
  • Monitoring, Physiologic
  • Wearable Electronic Devices*