A facile template-assisted electrodeposition approach to porous Cu/Cu2O nanowires

RSC Adv. 2021 Sep 10;11(48):30215-30221. doi: 10.1039/d1ra04770a. eCollection 2021 Sep 6.

Abstract

Although nanoporous materials have been fabricated by electrodeposition using micelles of P-123 as structure-directing entities, the possible geometry obtained has been limited to nanoporous films. Herein, a novel dual-template assisted electrodeposition method to fabricate Cu/Cu2O porous nanowires (PNs) using polymeric micelles as a soft template and polycarbonate membranes as a hard template is reported. These nanowires consist of a porous skeleton with nanosized pores of 20 nm on average and crystallized ligaments. Morphology, composition, and crystal structure are systematically investigated and the formation mechanism is discussed. The as-deposited Cu/Cu2O PNs are found to exhibit high electrocatalytic activity toward electroreduction of nitrate. At an applied cathodic potential of 0.53 V vs. the reference reversible hydrogen electrode, the selectivity for NH3 conversion is 37.3%. Our approach is anticipated to work for the synthesis of PNs of other materials that could be obtained via electrochemical means.