Eco-friendly synthesis of chromeno[4,3- b]chromenes with a new photosensitized WO3/ZnO@NH2-EY nanocatalyst

RSC Adv. 2021 May 18;11(29):18026-18039. doi: 10.1039/d0ra09737c. eCollection 2021 May 13.

Abstract

A new heterogeneous photoredox nanocatalyst WO3/ZnO@NH2-EY (EY: eosin Y) was fabricated and characterized employing some instrumental techniques such as XRD, FT-IR, ICP, TGA, and SEM. The photocatalytic efficiency of the prepared material was investigated in the preparation of various chromeno[4,3-b]chromenes via a simple and practical method. The chromene derivatives were prepared through the condensation of aromatic aldehydes, dimedone, and coumarin under an open-air atmosphere in the presence of a green LED under solventless conditions. The significant advantages of this new method include low reaction time, easy work-up, cost-effective, wide substrate scope, excellent yield, and complete atom economy of the final products. Moreover, the prepared photocatalyst could be frequently recovered up to four times with only a little decrease in the catalytic activity. Furthermore, the progress of the condensation reaction is demonstrated to occur via a radical mechanism, which shows that reactive species such as ˙O2 - and OH˙ together with h+ would be involved in the photocatalytic process. Stability and reusability studies also warranty good reproducibility of the nanocatalyst for at least 4 runs. Eventually, a hot filtration test ensured that the nanohybrid catalyst is stable in the reaction medium and its catalytic activity originates from the whole undecomposed conjugated composite.