Extraintestinal Pathogenic Escherichia coli Utilizes Surface-Located Elongation Factor G to Acquire Iron from Holo-Transferrin

Microbiol Spectr. 2022 Apr 27;10(2):e0166221. doi: 10.1128/spectrum.01662-21. Epub 2022 Mar 7.

Abstract

Extraintestinal pathogenic Escherichia coli (ExPEC) can cause systemic infections in both humans and animals. As an essential nutrient, iron is strictly sequestered by the host. Circumventing iron sequestration is a determinant factor for ExPEC infection. However, the ExPEC iron acquisition mechanism, particularly the mechanism of transferrin (TF) acquisition, remains unclear. This study reports that iron-saturated holo-TF can be utilized by ExPEC to promote its growth in culture medium and survival in macrophages. ExPEC specifically bound to holo-TF instead of iron-free apo-TF via the surface located elongation factor G (EFG) in both culture medium and macrophages. As a moonlighting protein, EFG specifically bound holo-TF and also released iron in TF. These two functions were performed by different domains of EFG, in which the N-terminal domains were responsible for holo-TF binding and the C-terminal domains were responsible for iron release. The functions of EFG and its domains have also been further confirmed by surface-display vectors. The surface overexpression of EFG bound significantly more holo-TF in macrophages and significantly improved bacterial intracellular survival ability. Our findings reveal a novel iron acquisition mechanism involving EFG, which suggests novel research avenues into the molecular mechanism of ExPEC resistance to nutritional immunity. IMPORTANCE Extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen causing systemic infections in humans and animals. The competition for iron between ExPEC and the host is a determinant for ExPEC to establish a successful infection. Here, we sought to elucidate the role of transferrin (TF) in the interaction between ExPEC and the host. Our results revealed that holo-TF could be utilized by ExPEC to enhance its growth in culture medium and survival in macrophages. Furthermore, the role of elongation factor G (EFG), a novel holo-TF-binding and TF-iron release protein, was confirmed in this study. Our work provides insights into the iron acquisition mechanism of ExPEC, deepens understanding of the interaction between holo-TF and pathogens, and broadens further researches into the molecular mechanism of ExPEC pathogenicity.

Keywords: elongation factor G; extraintestinal pathogenic Escherichia coli; intracellular survival; iron acquisition; transferrin-binding protein.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Extraintestinal Pathogenic Escherichia coli*
  • Iron / metabolism
  • Peptide Elongation Factor G / metabolism
  • Transferrin / chemistry
  • Virulence

Substances

  • Peptide Elongation Factor G
  • Transferrin
  • Iron