Star-Shaped ROMP Polymers Coated with Oligothiophenes That Exhibit Unique Emission

ACS Omega. 2022 Apr 5;7(15):13270-13279. doi: 10.1021/acsomega.2c00739. eCollection 2022 Apr 19.

Abstract

A series of oligo(thiophene)-modified "soluble" star-shaped ring-opening metathesis polymerization (ROMP) polymers were prepared by sequential living ROMP of norbornene and a cross-linking agent using a molybdenum-alkylidene catalyst, followed by Wittig-type coupling for termination with oligo(thiophene) carboxaldehydes. The resultant star-shaped ROMP polymers displayed unique emission properties affected by the core size and arm repeat units as well as the kind of oligothiophene coated. The effects of the thiophene groups on photophysical properties of star-shaped/linear polymers were studied via time-resolved fluorescence spectroscopy. Fluorescence lifetimes were determined in THF as 400, 640, 730, and 820 ps for Star 3TPh, Linear 3TPh, Star 4T, and Linear 4T, respectively. A significant enhancement of the nonradiative rate constants k nr in the star-shaped polymers results in relatively lower fluorescence quantum yields and shorter fluorescence lifetimes compared to the corresponding linear polymers.