Design and fabrication of ridge waveguide-based nanobeam cavities for on-chip single-photon sources

Opt Express. 2022 Mar 28;30(7):11973-11985. doi: 10.1364/OE.453164.

Abstract

We report on the design of nanohole/nanobeam cavities in ridge waveguides for on-chip, quantum-dot-based single-photon generation. Our design overcomes limitations of a low-refractive-index-contrast material platform in terms of emitter-mode coupling efficiency and yields an outcoupling efficiency of 0.73 to the output ridge waveguide. Importantly, this high coupling efficiency is combined with broadband operation of 9 nm full-width half-maximum. We provide an explicit design procedure for identifying the optimum geometrical parameters according to the developed design. Besides, we fabricate and optically characterize a proof-of-concept waveguide structure. The results of the microphotoluminescence measurements provide evidence for cavity-enhanced spontaneous emission from the quantum dot, thus supporting the potential of our design for on-chip single-photon sources applications.