Nitric oxide (NO) involved in Cd tolerance in NHX1 transgenic duckweed during Cd stress

Plant Signal Behav. 2022 Dec 31;17(1):2065114. doi: 10.1080/15592324.2022.2065114.

Abstract

Anthropogenic activities cause heavy metal pollution, such as cadmium (Cd). Na+/H+ antiporter (NHX1) transgenic duckweed showed Cd tolerance in our previous study, and the signal mechanism needs to be explored. As an important signal molecule, nitric oxide (NO) is involved in a number of functions under abiotic stress response. This study analyzed the levels of endogenous NO in wild-type (WT) duckweed and NHX1 duckweed under Cd treatment. The results showed that after 24 h Cd treatment, the endogenous NO level of WT duckweed decreased, which was significantly lower than that in NHX1 duckweed. Studies have proved that NHX1 influences pH. The level of NO in this study has been investigated at different pH. The NO level was the highest in the duckweed cultured with pH 5.3. Nitrate reductase gene expression was down-regulated and NO synthesis was decreased under Cd stress in WT duckweed. This study showed that NO level has been modified in NHX1 duckweed, which could be influcened by pH.

Keywords: Cadmium stress; NHX1 transgenic duckweed; NO; gene expression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Araceae* / metabolism
  • Cadmium / metabolism
  • Cadmium / toxicity
  • Metals, Heavy* / metabolism
  • Nitric Oxide / metabolism
  • Stress, Physiological / genetics

Substances

  • Metals, Heavy
  • Cadmium
  • Nitric Oxide

Grants and funding

This work was supported by the National Natural Science Foundation of China [No. 32071620];; Tianjin Natural Science Foundation of Tianjin [S20QNK618].