Healing Ion-Implanted Semiconductors by Hybrid Microwave Annealing: Activation of Nitrogen-Implanted TiO2

J Phys Chem Lett. 2022 May 5;13(17):3878-3885. doi: 10.1021/acs.jpclett.2c00220. Epub 2022 Apr 26.

Abstract

In order to recover the damaged structure of a nitrogen-implanted TiO2 (N-I-TiO2) photoanode, hybrid microwave annealing (HMA) is proposed as an alternative postannealing process instead of conventional thermal annealing (CTA). Compared to CTA, HMA provides distinctive advantages: (i) facile transformation of the interstitial N-N states into substitutional N-Ti states, (ii) better preservation of the ion-implanted nitrogen in TiO2, and (iii) effective alleviation of lattice strain and reconstruction of the broken bonds. As a result, the HMA-activated photoanode improves the photocurrent density by a factor of ∼3.2 from 0.29 to 0.93 mA cm-2 at 1.23 VRHE and the incident photon-to-current conversion efficiency (IPCE) from ∼2.9% to ∼10.5% at 430 nm relative to those of the as-prepared N-I-TiO2 photoanode in photoelectrochemical water oxidation, which are much better than those of the CTA-activated photoanode (0.58 mA cm-2 at 1.23 VRHE and IPCE of 5.7% at 430 nm), especially in the visible light region (≥420 nm).