Comprehensive Clinical Evaluation of a Deep Learning-Accelerated, Single-Breath-Hold Abdominal HASTE at 1.5 T and 3 T

Acad Radiol. 2023 Jan;30(1):93-102. doi: 10.1016/j.acra.2022.03.018. Epub 2022 Apr 22.

Abstract

To evaluate the clinical performance of a deep learning-accelerated single-breath-hold half-Fourier acquisition single-shot turbo spin echo (HASTEDL)-sequence for T2-weighted fat-suppressed MRI of the abdomen at 1.5 T and 3 T in comparison to standard T2-weighted fat-suppressed multi-shot turbo spin echo-sequence. A total of 320 patients who underwent a clinically indicated liver MRI at 1.5 T and 3 T between August 2020 and February 2021 were enrolled in this single-center, retrospective study. HASTEDL and standard sequences were assessed regarding overall and organ-based image quality, noise, contrast, sharpness, artifacts, diagnostic confidence, as well as lesion detectability using a Likert scale ranging from 1 to 4 (4 = best). The number of visible lesions of each organ was counted and the largest diameter of the major lesion was measured. HASTEDL showed excellent image quality (median 4, interquartile range 3-4), although BLADE (median 4, interquartile range 4-4) was rated significantly higher for overall and organ-based image quality of the adrenal gland (P < .001), contrast (P < 0.001), sharpness (P < 0.001), artifacts (P < 0.001), as well as diagnostic confidence (P < .001). No significant differences were found concerning noise (P = 0.886), organ-based image quality of the liver, pancreas, spleen, and kidneys (P = 0.120-0.366), number and measured diameter of the detected lesions (ICC = 0.972-1.0). Reduction of the aquisition time (TA) was at least 89% for 1.5 T images and 86% for 3 T images. HASTEDL provided excellent image quality, good diagnostic confidence and lesion detection compared to a standard T2-sequences, allowing an eminent reduction of the acquisition time.

Keywords: Deep learning; Diagnostic imaging; Image processing; Magnetic resonance imaging.

MeSH terms

  • Abdomen / diagnostic imaging
  • Abdomen / pathology
  • Artifacts
  • Deep Learning*
  • Humans
  • Liver Neoplasms* / pathology
  • Magnetic Resonance Imaging / methods
  • Retrospective Studies