Novel GO/Fe-Mn hybrid for the adsorptive removal of Pb(II) ions from aqueous solution and the spent adsorbent disposability in cement mix: compressive properties and leachability study for circular economy benefits

Environ Sci Pollut Res Int. 2022 Sep;29(42):63898-63916. doi: 10.1007/s11356-022-20303-0. Epub 2022 Apr 25.

Abstract

GO/Fe-Mn hybrids were prepared by a single-pot chemical precipitation method and were characterized using FTIR, XRD, Raman, zeta potential, and FESEM, which confirmed the impregnation of Fe/Mn onto GO sheets. The synthesized hybrids were successively applied in removing the Pb(II) ions from aqueous solution and later utilizing the spent adsorbent to increase the properties of cement. The adsorption capability of the synthesized hybrid was seen in a set of batch studies to find out that about 15 min of contact time was required to remove 99% of the contaminant at a pH of 5 ± 0.2 and a dose of 0.83 g/L. The mechanism of the adsorption process for the synthesized hybrid was well described by Elovich kinetic model with an R2 of 0.99 and Langmuir isotherm model, also with an R2 of 0.99. The desorption studies conducted using 0.1 M HCl solution showed significant stability of the hybrid with a drop of 12% in the removal efficiency of Pb after up to five adsorption-desorption cycles. This points to an efficient adsorbent having potential for economical use. Later, the spent adsorbent was mixed with cement at ratios of 0.05%, 0.1%, and 0.5%, and compressive strength tests were performed, which showed an increase in the strength by 7.62%, 16.11%, and 26.82% at 28 days of curing time. The TCLP and SPLP tests performed on the hybrid and cement-spent adsorbent mix showed all the leaching parameters were well within the permissible limits. This development shows the potential for the use of spent adsorbent in a circular economy model.

Keywords: Compressive strength; Disposal; GO/Fe–Mn hybrid; Pb adsorption; Reusability; SPLP; TCLP.

MeSH terms

  • Adsorption
  • Hydrogen-Ion Concentration
  • Ions
  • Kinetics
  • Lead*
  • Water
  • Water Pollutants, Chemical* / analysis

Substances

  • Ions
  • Water Pollutants, Chemical
  • Water
  • Lead