Flexural Strength of CAD/CAM Denture Base Materials: Systematic Review and Meta-analysis of In-vitro Studies

J Int Soc Prev Community Dent. 2022 Apr 8;12(2):160-170. doi: 10.4103/jispcd.JISPCD_310_21. eCollection 2022 Mar-Apr.

Abstract

Introduction: Digital complete dentures fabrication techniques are expanding. This study aimed to review flexural strength (FS) of milled and 3D-printed denture base materials to answer the study question: is FS of computer-aided designing/computer-aided manufacturing (CAD/CAM) denture base comparable to conventional heat-polymerized materials?

Materials and methods: Search was done within different databases for articles published between January 2010 and June 2021 using specific keywords. Articles of in-vitro studies in English language with methods following International Standards Organization standardization/ADA specifications for flexural testing of conventional and CAD/CAM (milled or printed) polymethyl methacrylate (PMMA) materials were included.

Results: Out of the 61 studies, 9 were processed for data extraction and only 7 underwent meta-analysis. Two, six, and one study showed high, moderate, and low risk of bias, respectively. Random-effects model was used for analysis and resulted in the average FS of 120.61 MPa [95% confidence interval (CI): 109.81-131.41] and 92.16 MPa (CI: 75.12-109.19) for CAD/CAM milled and heat-polymerized PMMA, respectively.

Conclusion: Subtractive CAD/CAM technique of denture fabrication showed satisfactory FS values, whereas additive CAD/CAM method was comparable to conventional heat-polymerized technique with lower value, requiring further investigations and improvement. The clinical use of milled denture bases is an acceptable substitution to heat-polymerized PMMA, making the denture fabrication an easier and faster process.

Keywords: 3D-printed denture base; CAD/CAM denture base; PMMA; flexural strength.

Publication types

  • Review