An experimental study on strength improvement of expansive subgrades by polypropylene fibers and geogrid reinforcement

Sci Rep. 2022 Apr 23;12(1):6685. doi: 10.1038/s41598-022-10773-0.

Abstract

The rapid development of infrastructure often encounters the loose subgrades and is becoming difficult to carry to construction activities. Numerous counteracting methods are developed to control the swelling-shrinkage behavior of the expansive subgrades. The mechanical stabilization of the expansive subgrades by reinforcing with the polypropylene fiber and geogrid is sustainable. Geogrids and polypropylene fibers have been used extensively to strengthen the expansive subgrade and foundations as individuals. The polypropylene fiber reinforcement enhanced the reinforced expansive subgrades's tensile strength capacity, wherein the geogrid reinforcement is the quick fix mechanical stabilization technique, which reduces the pavement failures. In this research, the polypropylene fiber and geogrid reinforcement's combined effect has been evaluated to stabilize the pavement subgrades. The various mechanical strength test such as unconfined compressive strength (UCS) and large direct shear box test was conducted to evaluate the mechanical interaction between expansive subgrades, polypropylene fiber, triaxial geogrid, and biaxial geogrid at the interface. The polypropylene fiber of 12 mm length was used in the proportion of 0.25%, 0.5%, and 1.0% and single geogrid layer at mid-depth. The result shows that reinforced subgrades' shear strength with a layer of biaxial/ triaxial geogrid and polypropylene fiber increases by 177%. It is also observed that the unconfined compressive strength of the expansive subgrades increased ranging 3.8-139.6% with the inclusion of polypropylene fiber with geogrid in different combinations. The combined reinforcement method shows an effective treatment methodology to improve the property of expansive subgrades.