Persistent Spike-specific T cell immunity despite antibody reduction after 3 months from SARS-CoV-2 BNT162b2-mRNA vaccine

Sci Rep. 2022 Apr 23;12(1):6687. doi: 10.1038/s41598-022-07741-z.

Abstract

Vaccine is the main public health measure to reduce SARS-CoV-2 transmission and hospitalization, and a massive scientific effort worldwide resulted in the rapid development of effective vaccines. This work aimed to define the dynamics and persistence of humoral and cell-mediated immune response in Health Care Workers who received a two-dose BNT162b2-mRNA vaccination. Serological response was evaluated by quantifying anti-RBD and neutralizing antibodies while cell-mediated response was performed by a whole blood test quantifying Th1 cytokines (IFN-γ, TNF-α, IL-2) produced in response to Spike peptides. BNT162b2-mRNA vaccine induced both humoral and cell-mediated immune response against Spike in all HCW early after the second dose. After 12 weeks from vaccination, the titer of anti-RBD antibodies as well as their neutralization function decreased while the Spike-specific T-cells persisted at the same level as soon after vaccine boost. Of note, a correlation between cellular and humoral response persevered, suggesting the persistence of a coordinated immune response. The long lasting cell-mediated immune response after 3 months from vaccination highlight its importance in the maintaining of specific immunity able to expand again to fight eventual new antigen encountering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • BNT162 Vaccine
  • COVID-19 Vaccines
  • COVID-19* / prevention & control
  • Humans
  • Immunity, Cellular
  • Immunity, Humoral
  • SARS-CoV-2*
  • T-Lymphocytes
  • Vaccination
  • Vaccines, Synthetic
  • mRNA Vaccines

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • COVID-19 Vaccines
  • Vaccines, Synthetic
  • mRNA Vaccines
  • BNT162 Vaccine