Melting Himalayas and mercury export: Results of continuous observations from the Rongbuk Glacier on Mt. Everest and future insights

Water Res. 2022 Jun 30:218:118474. doi: 10.1016/j.watres.2022.118474. Epub 2022 Apr 16.

Abstract

Glaciers in the Himalayan region have been receding rapidly in recent decades, drawing increasing concerns about the release of legacy pollutants (e.g., mercury (Hg)). To investigate the distribution, transport and controlling factors of Hg in glacier-fed runoff, from June 2019 to July 2020, a continuous monitoring and an intensive sampling campaign were conducted in the Rongbuk Glacier-fed basin (RGB) on the north slope of Mt. Everest in the middle Himalayas. The total Hg (THg) and methyl Hg (MeHg) concentrations were 1.56 ± 0.85 and 0.057 ± 0.025 ng/L, respectively, which were comparable to the global background levels and were mainly affected by the total suspended particulate matter (TSP). In addition, THg and MeHg showed significant diurnal variations, with peak values appearing at approximately 17:00 (upstream) and 19:00 (downstream). Based on the annual runoff and average Hg concentration, the annual export fluxes of THg and MeHg were estimated to be 441 g and 16 g, respectively. The yields of THg and MeHg in the RGB were 1.6 and 0.06 μg/m2/year, respectively. Currently, the annual Hg export of meltwater runoff in the Himalayan region is approximately 337 kg/year. When flowing through the proglacial lake, the THg concentrations decreased by 32% and 15% in the proglacial lake water and in the outlet, respectively, indicating that proglacial lakes had a sedimentation effect on the Hg transport. The Hg export from meltwater runoff in the Himalayas will likely increase considering the meltwater runoff has been projected to increase in the future. Nonetheless, emerging proglacial lakes may exert ambiguous effects on the glacier exported Hg under changing climate. Proglacial lakes could lower the levels and amounts of Hg in the glacier runoff, whereas the outburst of proglacial lakes could lead to an instantaneous release of Hg stored in lake waters and sediments. Our analysis shed light on the environmental impact of glacier retreat in the Himalayas and highlighted the need for integrated monitoring and study of Hg in glacier runoff and glacial lakes.

Keywords: Export; Glacier runoff; Hg; Himalayas; Proglacial lake; Rongbuk Glacier.

MeSH terms

  • Environmental Monitoring
  • Ice Cover
  • Lakes
  • Mercury* / analysis
  • Water Pollutants, Chemical* / analysis

Substances

  • Water Pollutants, Chemical
  • Mercury