CinA mediates multidrug tolerance in Mycobacterium tuberculosis

Nat Commun. 2022 Apr 22;13(1):2203. doi: 10.1038/s41467-022-29832-1.

Abstract

The ability of Mycobacterium tuberculosis (Mtb) to resist and tolerate antibiotics complicates the development of improved tuberculosis (TB) chemotherapies. Here we define the Mtb protein CinA as a major determinant of drug tolerance and as a potential target to shorten TB chemotherapy. By reducing the fraction of drug-tolerant persisters, genetic inactivation of cinA accelerated killing of Mtb by four antibiotics in clinical use: isoniazid, ethionamide, delamanid and pretomanid. Mtb ΔcinA was killed rapidly in conditions known to impede the efficacy of isoniazid, such as during nutrient starvation, during persistence in a caseum mimetic, in activated macrophages and during chronic mouse infection. Deletion of CinA also increased in vivo killing of Mtb by BPaL, a combination of pretomanid, bedaquiline and linezolid that is used to treat highly drug-resistant TB. Genetic and drug metabolism studies suggest that CinA mediates drug tolerance via cleavage of NAD-drug adducts.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antitubercular Agents / pharmacology
  • Antitubercular Agents / therapeutic use
  • Drug Tolerance
  • Isoniazid / pharmacology
  • Mice
  • Mycobacterium tuberculosis* / genetics
  • Tuberculosis, Multidrug-Resistant* / drug therapy

Substances

  • Antitubercular Agents
  • Isoniazid