Active Disturbance Rejection Control in Magnetic Bearing Rotor Systems with Redundant Structures

Sensors (Basel). 2022 Apr 14;22(8):3012. doi: 10.3390/s22083012.

Abstract

At present, magnetic bearings are a better energy-saving choice than mechanical bearings in industrial applications. However, there are strongly coupled characteristics in magnetic bearing-rotor systems with redundant structures, and uncertain disturbances in the electrical system as well as external disturbances, and these unfavorable factors degrade the performance of the system. To improve the anti-interference performance of magnetic bearing systems, this paper proposes the inverse of the current distribution matrix W-1 meaning that the active disturbance rejection control simulation model can be carried out without neglecting the current of each coil. Firstly, based on the working mechanism of magnetic bearings with redundant structures and the nonlinear electromagnetic force model, the current and displacement stiffness models of magnetic bearings are established, and a dynamic model of the rotor is constructed. Then, according to the dynamic model of the rotor and the mapping relationship between the current of each coil and the electromagnetic force of the magnetic bearing, we established the equivalent control loop of the magnetic bearing-rotor system with redundant structures. Finally, on the basis of the active disturbance rejection control (ADRC) strategy, we designed a linear active disturbance rejection controller (LADRC) for magnetic bearings with redundant structures under the condition of no coil failure, and a corresponding simulation was carried out. The results demonstrate that compared to PID+current distribution control strategy, the LADRC+current distribution control strategy proposed in this paper is able to effectively improve the anti-interference performance of the rotors supported by magnetic bearings with redundant structures.

Keywords: active disturbance rejection controller; anti-interference performance; magnetic bearings; redundant structures.