Design and Performance Analysis of a Micro-Displacement Worktable Based on Flexure Hinges

Micromachines (Basel). 2022 Mar 26;13(4):518. doi: 10.3390/mi13040518.

Abstract

The flexure hinge is a kind of micro-displacement adjustment device with application prospects because of its high displacement resolution, positioning accuracy and repeatability. In this study, a micro-displacement worktable with four degrees of freedom (X→, Z→, X︵, Z︵) was designed. The micro-displacement worktable was composed of three different flexure hinges. The adjustment ranges and adjustment accuracy of flexure hinges in terms of their respective degrees were improved. The micro-displacement worktable performance was examined by FEA (Finite Element Method). The maximum displacement that was adjusted in X→ and Z→ was 1.67 µm and 1.74 µm. The maximum angle adjusted in the X︵ and Z︵ direction was 14.90° and 18.58°. A test platform was developed for micro-displacement worktable performance tests. The simulation results showed a good agreement with the experimental results.

Keywords: finite element simulation; flexure hinge; four degrees of freedom; micro-displacement.