Disquisitions Relating to Principles of Thermodynamic Equilibrium in Climate Modelling

Entropy (Basel). 2022 Mar 26;24(4):459. doi: 10.3390/e24040459.

Abstract

We revisit the fundamental principles of thermodynamic equilibrium in relation to heat transfer processes within the Earth’s atmosphere. A knowledge of equilibrium states at ambient temperatures (T) and pressures (p) and deviations for these p-T states due to various transport ‘forces’ and flux events give rise to gradients (dT/dz) and (dp/dz) of height z throughout the atmosphere. Fluctuations about these troposphere averages determine weather and climates. Concentric and time-span average values <T> (z, Δt)) and its gradients known as the lapse rate = d < T(z) >/dz have hitherto been assumed in climate models to be determined by a closed, reversible, and adiabatic expansion process against the constant gravitational force of acceleration (g). Thermodynamics tells us nothing about the process mechanisms, but adiabatic-expansion hypothesis is deemed in climate computer models to be convection rather than conduction or radiation. This prevailing climate modelling hypothesis violates the 2nd law of thermodynamics. This idealized hypothetical process cannot be the causal explanation of the experimentally observed mean lapse rate (approx.−6.5 K/km) in the troposphere. Rather, the troposphere lapse rate is primarily determined by the radiation heat-transfer processes between black-body or IR emissivity and IR and sunlight absorption. When the effect of transducer gases (H2O and CO2) is added to the Earth’s emission radiation balance in a 1D-2level primitive model, a linear lapse rate is obtained. This rigorous result for a perturbing cooling effect of transducer (‘greenhouse’) gases on an otherwise sunlight-transducer gas-free troposphere has profound implications. One corollary is the conclusion that increasing the concentration of an existing weak transducer, i.e., CO2, could only have a net cooling effect, if any, on the concentric average <T> (z = 0) at sea level and lower troposphere (z < 1 km). A more plausible explanation of global warming is the enthalpy emission ’footprint’ of all fuels, including nuclear.

Keywords: adiabatic expansion; atmospheric thermodynamics; climate modelling; lapse rate; radiation balance; thermal equilibrium; troposphere.