Consensual Regression of Soluble Solids Content in Peach by Near Infrared Spectrocopy

Foods. 2022 Apr 11;11(8):1095. doi: 10.3390/foods11081095.

Abstract

In order to reduce the uncertainty of the genetic algorithm (GA) in optimizing the near-infrared spectral calibration model and avoid the loss of spectral information of the unselected variables, a strategy of fusing consensus models is proposed to measure the soluble solids content (SSC) in peaches. A total of 266 peach samples were collected at four arrivals, and their interactance spectra were scanned by an integrated analyzer prototype, and then an internal index of SSC was destructively measured by the standard refractometry method. The near-infrared spectra were pre-processed with mean centering and were selected successively with a genetic algorithm (GA) to construct the consensus model, which was integrated with two member models with optimized weightings. One was the conventional partial least square (PLS) optimized with GA selected variables (PLSGA), and the other one was the derived PLS developed with residual variables after GA selections (PLSRV). The performance of PLSRV models showed some useful spectral information related to peaches' SSC and someone performed close to the full-spectral-based PLS model. Among these 10 runs, consensus models obtained a lower root mean squared errors of prediction (RMSEP), with an average of 1.106% and standard deviation (SD) of 0.0068, and performed better than that of the optimized PLSGA models, which achieved a RMSEP of average 1.116% with SD of 0.0097. It can be concluded that the application of fusion strategy can reduce the fluctuation uncertainty of a model optimized by genetic algorithm, fulfill the utilization of the spectral information amount, and realize the rapid detection of the internal quality of the peach.

Keywords: consensus fusion; genetic algorithm; near-infrared spectroscopy; partial least squares; peach.