Investigation of Modified Auxetic Structures from Rigid Rotating Squares

Materials (Basel). 2022 Apr 13;15(8):2848. doi: 10.3390/ma15082848.

Abstract

Auxetic structures exhibit unusual changes in size, expanding laterally upon stretching instead of contracting. This paper presents this effect in a failsafe mode in structures made of rigid squares. We applied the concept of auxetic structures made of rigid rotating squares (from Grima and Evans) and offer a novel solution for connecting them. By introducing axes of rotation on the surface of the squares, a reliable working system is obtained, free from stress, in which the squares can come into contact with each other and completely cover the surface of the structure, or, in the open position, form regularly arranged pores. Herein, we present a new 2D auxetic metamaterial that is mathematically generated based on a theoretical relationship of the angle between the edges of a square and the position of the axis of rotation. Physical models were generated in the form of a planar structure and in the form of a circular closed structure. Such physical models confirmed our initial considerations and the geometrical relationships, offering new application possibilities. The novel structure that was designed and manufactured for the purpose of the paper can be considered as a new proposal in the market of auxetic materials.

Keywords: auxetic structures; metamaterials; negative Poisson’s ratio (NPR).