Extremely Low-Frequency Electromagnetic Fields Increase Cytokines in Human Hair Follicles through Wnt/β-Catenin Signaling

Biomedicines. 2022 Apr 18;10(4):924. doi: 10.3390/biomedicines10040924.

Abstract

Hair loss is a chronic disorder that affects many people; however, a complete treatment has not yet been developed. Therefore, new therapeutic agents for preventing hair loss must be developed, and electromagnetic field (EMF) therapy has been proven to be a promising medical treatment in various fields, including hair loss treatment. This study evaluated the effect of extremely low-frequency electromagnetic field (ELF-EMF) intensity and exposure time by analyzing the expression of cytokines and anagen-related molecules, which influence hair activation and growth, in hair bulb spheroid (HBS) and hair follicle (HF) organ cultures. ELF-EMFs did not induce toxicity in the HBSs, as verified via the lactate dehydrogenase (LDH) assay. Moreover, an ELF-EMF intensity of 5-20 G promoted the expression of ALP, versican, β-catenin, and several cytokines (VEGF, PDGF, FGF-10, and ET-1) in HBSs. Immunohistochemical staining showed that ELF-EMF at an intensity of 5-20 G upregulated ALP and β-catenin and decreased TUNEL staining in HBS. Moreover, HFs exposed to ELF-EMF for 60 min exhibited an increase in hair length and a 1.5-fold increase in IL-4, ICAM-1, ALP, and versican mRNA expression compared to the control. Immunohistochemical staining indicated that 60 min of ELF-EMF can increase the expression of ALP and β-catenin and decreases TUNEL staining in organ cultures. Collectively, our results demonstrated that ELF-EMF exposure at a 10 G intensity for 60 min promoted hair shaft growth in HFs due to the effect of cytokines and adhesion molecules via the Wnt/β-catenin pathway. Therefore, ELF-EMF is a promising treatment for hair loss.

Keywords: dermal papilla cells; electromagnetic field; hair bulb spheroids; hair follicle; β-catenin.