In Vitro Study of the Biological Potential of Wastewater Obtained after the Distillation of Four Bulgarian Oil-Bearing Roses

Plants (Basel). 2022 Apr 14;11(8):1073. doi: 10.3390/plants11081073.

Abstract

The wastewater after rose oil distillation is usually discharged into the drainage systems and it represents a serious environmental problem. While being rich in polyphenols, which have beneficial biological activity and application in the pharmaceutical industry, limited research has been carried out about the biological activity of the specific wastewaters per se. Wastewaters after distillation of the four Bulgarian oil-bearing roses Rosa damascena Mill., R. alba L., R. centifolia L., and R. gallica L. exerted significant antioxidant activity and good antiherpes simplex virus type-1 (HSV-1) activity while maintaining a good toxicological safety profile (low cytotoxic effect) towards normal cell lines. More precisely, the non-tumorigenic cells were a human (HEK-293 embryonic kidney cells) and a mouse cell line (CCL-1 fibroblasts, which are recommended as a standard for cytotoxicity evaluation in Annex C of ISO 10993-5). The concentrations that achieved antioxidant and radical scavenging effects (0.04-0.92% v/v) were much lower than most of the maximum tolerated concentrations for the tissue culture cells (0.2-3.4% v/v). The wastewaters had a weak antiproliferative effect against Staphylococcus aureus. None of the wastewaters had activity against Gram-negative bacteria or a bactericidal or antifungal effect. We can conclude that these four species, which are the most preferred species worldwide for producing high-quality rose oil, have the potential to be developed as promising antioxidant and antiherpesvirus nutraceuticals.

Keywords: antibacterial properties; antiherpesvirus activity; antiradical activity; cytotoxicity; rose wastewaters.